There are N seats in a row. N people come one after another to fill the seats according to the following rules:
Note that due to rule 1, some seats will surely be left unoccupied, and the maximum number of people that can be seated is less than N (for N > 1).
Here are the possible seating arrangements for N = 15:
We see that if the first person chooses correctly, the 15 seats can seat up to 7 people.
We can also see that the first person has 9 choices to maximize the number of people that may be seated.
Let f(N) be the number of choices the first person has to maximize the number of occupants for N seats in a row. Thus, f(1) = 1, f(15) = 9, f(20) = 6, and f(500) = 16.
Also, ∑f(N) = 83 for 1 ≤ N ≤ 20 and ∑f(N) = 13343 for 1 ≤ N ≤ 500.
Find ∑f(N) for 1 ≤ N ≤ 1012. Give the last 8 digits of your answer.